Spectral Clustering Approach with K-Nearest Neighbor and Weighted Mahalanobis Distance for Data Mining
نویسندگان
چکیده
This paper proposes a spectral clustering method using k-means and weighted Mahalanobis distance (Referred to as MDLSC) enhance the degree of correlation between data points improve accuracy Laplacian matrix eigenvectors. First, we used coefficient weight calculate any two constructed set; then, based on matrix, K-nearest neighborhood (KNN) algorithm construct similarity matrix. Secondly, regularized was calculated according normalized decomposed, feature space for obtained. fully considered linear special spatial structure achieved accurate clustering. Finally, various algorithms were conduct multi-angle comparative experiments artificial UCI sets. The experimental results show that MDLSC has certain advantages in each index quality is better. distribution eigenvectors also by more reasonable, calculation maximizes retention characteristics original data, thereby improving algorithm.
منابع مشابه
A New Distance-weighted k-nearest Neighbor Classifier
In this paper, we develop a novel Distance-weighted k -nearest Neighbor rule (DWKNN), using the dual distance-weighted function. The proposed DWKNN is motivated by the sensitivity problem of the selection of the neighborhood size k that exists in k -nearest Neighbor rule (KNN), with the aim of improving classification performance. The experiment results on twelve real data sets demonstrate that...
متن کاملWeighted k-Nearest-Neighbor Techniques for High Throughput Screening Data
The k-nearest neighbors (knn) is a simple but effective method of classification. In this paper we present an extended version of this technique for chemical compounds used in High Throughput Screening, where the distances of the nearest neighbors can be taken into account. Our algorithm uses kernel weight functions as guidance for the process of defining activity in screening data. Proposed ke...
متن کاملSpectral Clustering Based on k-Nearest Neighbor Graph
Finding clusters in data is a challenging task when the clusters differ widely in shapes, sizes, and densities. We present a novel spectral algorithm Speclus with a similarity measure based on modified mutual nearest neighbor graph. The resulting affinity matrix reflex the true structure of data. Its eigenvectors, that do not change their sign, are used for clustering data. The algorithm requir...
متن کاملNeighbor-weighted K-nearest neighbor for unbalanced text corpus
Text categorization or classification is the automated assigning of text documents to pre-defined classes based on their contents. Many of classification algorithms usually assume that the training examples are evenly distributed among different classes. However, unbalanced data sets often appear in many practical applications. In order to deal with uneven text sets, we propose the neighbor-wei...
متن کاملImproving nearest neighbor classification with cam weighted distance
Nearest neighbor (NN) classification assumes locally constant class conditional probabilities, and suffers from bias in high dimensions with a small sample set. In this paper, we propose a novel cam weighted distance to ameliorate the curse of dimensionality. Different from the existing neighborhood-based methods which only analyze a small space emanating from the query sample, the proposed nea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2023
ISSN: ['2079-9292']
DOI: https://doi.org/10.3390/electronics12153284